The National 911 Program and California Office of Emergency Services

Next Generation 9-1-1 (NG9-1-1) Lessons Learned

Washington, DC November 2022

DOCUMENT CHANGE HISTORY

The table below details the change history of this Lessons Learned Report document.

Version	Publication Date	Description
1.0	November 2022	Initial Release

Table of Contents

Executive Summary	. 1
Introduction/Background	. 2
Approach/Methodology	. 2
Findings/Results	. 4
Key Takeaways	. 9
Testing	. 9
Design	10
Contract and Project Management	10
Conclusion	11

Executive Summary

The California Office of Emergency Services (Cal OES) 9-1-1 Emergency Communications Branch is charged with ensuring 9-1-1 emergency call delivery within the state of California. In 2017, Cal OES began the transition from a legacy copper-based enhanced 9-1-1 environment to an Internet Protocol (IP)-based Next Generation 9-1-1 (NG9-1-1) model conforming to the National Emergency Number Association's (NENA) i3 standard for NG9-1-1.

The Cal OES model was designed to segregate the state into four similar-sized regions of NG9-1-1 service, each to be served by an independent regional network service provider (RNSP). To create full Next Generation Core Services/Emergency Services IP network (NGCS/ESInet) redundancy, Cal OES also selected a prime network service provider (PNSP) that will provide a secondary level of service to all 449 public safety answering points (PSAPs) in the state. The benefit of this model is that every PSAP would have service from its region's NGCS/ESInet providers and redundant service from the prime NGCS/ESInet provider.

The Cal OES approach established a lab environment in which all prospective NGCS and callhandling equipment (CHE) providers would be required to conform to the PNSP-created interface control document (ICD) and pass the certification path provided in the Cal OES Lab. Each PSAP, when ready to move to NG9-1-1, would select CHE from a list of providers that achieved certification in the Cal OES Lab.

In early 2012, Congress passed the Next Generation 9-1-1 Advancement Act of 2011 (Act), directing the Department of Commerce's National Telecommunications and Information Administration (NTIA) and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) to establish and jointly manage a 911 Implementation Grant Program. The National 911 Program (Program), within NHTSA's Office of Emergency Services, administered the grant program. Cal OES was awarded a portion of the grant to further NG9-1-1 initiatives in the state of California. Mission Critical Partners, LLC (MCP) was tasked by the Program to formulate lessons learned from Cal OES as it navigated the process from concept to the precipice of deployment. In doing so, MCP reviewed the test plans, interconnection documents, contracts, and met with the Cal OES 9-1-1 team to develop these lessons learned from their experiences with the project to date.

Introduction/Background

The NHTSA Program's mission is to provide leadership and coordination in supporting and promoting optimal 9-1-1 service throughout the country. The Program recognizes the challenges the 9-1-1 industry faces in the transition to NG9-1-1. The approach and design of NG9-1-1 environments are complex and varied, and present many challenges as states, regions, and localities aim to interconnect their systems and improve interoperability. MCP was tasked through the Program to create a document of lessons learned related to procurement and subsequent implementation of interoperable NG9-1-1 solutions.

In support of that goal, the 9-1-1 Emergency Communications Branch of Cal OES agreed to share discoveries based upon deployment of the statewide NG9-1-1 solution in California. The Cal OES solution represents a multi-regional approach that uses three different NGCS cores with four different NGCS providers in an interoperable model. This unique approach involving multiple providers presented an opportunity for the 9-1-1 community to learn more about the challenges and successes Cal OES experienced with interoperability among NG9-1-1 providers.

Approach/Methodology

The Cal OES NG9-1-1 model divided the state into four regions, each to be served by an independent RNSP. To ensure redundancy, the model also included plans for a PNSP to create a full NGCS/ESInet statewide. In this approach, each PSAP receives calls from both the PNSP and the RNSP as they are both capable of delivering all calls at any given time. During normal operations, the RNSP delivers calls from wireless providers and legacy incumbents to the PSAP and the PNSP delivers competitive local exchange carrier (CLEC) and Voice over IP (VoIP) originated calls. The fact that the RNSP and PNSP have separate unique paths to each PSAP and are required to have ESInet-to-ESInet call delivery capabilities between them allows this to function seamlessly to the PSAP.

Cal OES split the procurement process into two requests for proposals (RFPs)—one for the PNSP and one for the RNSP. There were differing areas of responsibilities between the PNSP and RNSP contractors, with the PNSP expected to have more leadership and coordination roles. RNSPs could be awarded multiple regions and were permitted to deploy the NGCS functional elements (FEs) of another provider. The contractor awarded as the PNSP was ineligible for award as a RNSP. One RNSP won two of the four regions and another RNSP is deploying with the NGCS FEs of another regional winner. Cal OES required any respondent to the RFPs to accept Cal OES' terms and conditions prior to submitting a proposal for consideration.

In the RFPs, Cal OES established that the PNSP would be the authoritative source for defining an ICD for all core service providers to exchange data. The ICD was required to be based upon NENA i3 standards.

The PNSP also was accountable for developing lab testing plans for NGCS/ESInet connectivity and interoperability with CHE. This testing included two phases, with the first phase focused on basic functionality and the second focused on operational testing. CHE providers seeking lab certification were required to pass both phases of testing against two NGCS providers. This provision prevented CHE vendors from only validating against their own NGCS. This methodology ensured that basic interoperability would be lab tested before deployment could begin.

NG9-1-1 has strict security requirements and mandates the use of Transport Layer Security (TLS) communications between NGCS FEs once they enter an NGCS provider's ESInet. California was farther along in its testing and development than the NG9-1-1 Interoperability Oversight Commission (NIOC) was in bringing the PSAP Credentialling Authority (PCA) online. To meet this requirement, Cal OES required the PNSP to be the credentialling authority after it developed a Certificate Policy (CP) that all NGCS and CHE providers would be required to follow to receive certificates and pass traffic across the Cal OES ESInet. In the short term, this required that the PNSP act as the root certificate provider to all entities on the Cal OES network until transitioned to a nationwide approach requiring verification from the PCA's root certificate.

Figure 1: California NG9-1-1 Overview (provided by Cal OES)

Findings/Results

Challenge/Finding	Lessons Learned	Recommendation
	Requirements	
Records were loaded into the location database (LDB) in different formats.	Ensure all stakeholders involved understand the LDB records format.	Require compliance with NENA CXLDF ¹ for all LDB records.
It is difficult to determine if CHE vendors are really i3- capable across NGCS platforms.	Vendors state CHE is i3- compliant, but testing demonstrates it is not, or is only i3-compliant using its NGCS FEs.	Very specific RFP questions and follow up. With which NGCS providers have you deployed i3 interoperability? What were the issues during deployment and the methods adopted to ensure they do not arise in the future?
There were some challenges identifying which vendor (ESInet or NGCS provider) was accountable for the demarcation point at the PSAP, and which was accountable to provide the firewall.	The contract requirements did not clearly define the demarcation point between the NGCS provider and CHE.	Define specific demarcation points for handoff from the ESInet provider to the CHE. CHE vendors will need to follow the NGCS ICD for connectivity.
Legacy CHE may have software that has reached end of life (EOL) and will not be updated.	Have a plan for EOL CHE if it is not part of the deployment.	RFP specifically states NGCS provider will deploy legacy PSAP gateways (LPGs,) and have a longer-term plan in place to update all CHE.
Current deployed CHE is not IPv6-capable.	Some CHE providers have not deployed IPv6 capabilities.	Identify if NGCS provider will deploy with IPv6; if so, the contract should include a requirement for an IPv4 interoperability plan.

Table 1: Lessons Learned Matrix

¹ Civic Location Data Exchange Format

Challenge/Finding	Lessons Learned	Recommendation	
Project Management			
The connection costs for originating service providers (OSPs) to connect to the points of ingress (POI) were established within the NG9-1-1 contract. The contract also established the respondent/NG9-1-1 service provider could not charge the OSP a connection fee.	This prevented OSPs from having to pay connection costs to the NG9-1-1 network and attempting to seek funds for connection (i.e., cost recovery).	Consider contract language that prevents OSPs from seeking cost recovery for connections to designated POIs. Collaborate with your state or local regulatory agency, if applicable.	
Some vendors were not willing to adjust to the terms and conditions required in the contract.	It was beneficial to require vendors to agree to the terms and conditions of the contract prior to engaging them in the procurement process. This saved time and effort for all parties involved.	Consider strategies that make it desirable for vendors to agree to the terms and conditions of the contract prior to engaging in procurement. This ensures a procuring agency does not invest months in procurement to reach an impasse and have to re-initiate the procurement process. <i>Note: if this is</i> <i>mandatory, it may exclude</i> <i>viable solutions from</i> <i>consideration.</i>	
Testing and validation processes involving PSAP staff presented some challenges due to the varying levels of understanding with NG9-1-1 capabilities and changes, especially regarding class of service (COS) and wireless device location delivery and accuracy.	PSAP education needs to be a key part of the change management strategy. Education needs to be an early and ongoing focus throughout the project. Identifying differences between presentation and maintenance of legacy 9-1-1 versus NG9-1-1.	Ensure PSAP education is part of the change management strategy and that any PSAP staff assisting with testing are educated on changes to location information format and presentation.	

Challenge/Finding	Lessons Learned	Recommendation
At times, there were	NGCS/ESInet go-live events	Ensure PSAP management
inconsistent field-testing	occur in the background and	and line personnel are
results with line personnel	often PSAP staff are not	integrated into the change
due to a lack of knowledge	aware the transition has	management process and
with the NGCS/ESInet	occurred. It was discovered	educated on changes ahead of
project and expected change	later that some data elements	the change occurring.
impacts.	changed or were not present.	
Progress slowed with vendors	More clarity on what is	The project plan should have
between the initial	needed to keep the project	milestones tied to service
deployment and start of	moving was needed.	level agreements (SLAs)
service.		between initial deployment
		and the start of services to
		ensure continuous progress.
Having multiple NGCS	Cal OES wrote into its	In environments where there
providers involved in the	contract that the PNSP had	are multiple providers,
design solution led to	the authoritative ICD for	incorporate language that
interoperability issues.	testing and that all others had	identifies the authoritative
A single NGCS provider with	to comply. The contract	entity for defining interfaces
CHE may want differing	language needed to be	and other aspects defined in
interconnection types.	stronger. Ensure all parties	an RFP.
	know which entity will be	
	creating the ICD in	
	accordance with NENA i3.	
Competing projects led to	With a large-scale project, it	Depending on scale of the
resource constraints with	may be prudent to require	project, ensure project
vendors.	that the vendor identify a	resources are committed to
	dedicated project	support the demands of a
	management resource. If not	large-scale initiative by
	fully dedicated, then define	requiring a dedicated resource
	the percent of time that	or a defined percentage of
	named resource will be	time resources will be
	focused on the project.	committed to the project.

Challenge/Finding	Lessons Learned	Recommendation
Policy-based routing is a capability within NG9-1-1 that can help strengthen the resiliency of 9-1-1 call delivery, but many PSAPs were not prepared operationally to implement and utilize this function.	There is a need to educate PSAP leadership on strategies for continuity of operations that can be supported through NG9-1-1 capabilities.	Engage PSAPs in change management and operational discussions focused on continuity of operations in advance of deployment.
	Testing	
All vendors had to complete acceptance testing within the Cal OES Lab. Each vendor would normally have its own test plan; however, with multiple vendors, allowing this would have introduced inconsistencies to the process.	A single test plan to test the core requirements in the contract brought consistency to the testing process and worked well to ensure compliance with requirements.	When multiple vendors are involved, work from a single test plan to ensure consistent results. In a multi-vendor environment, the agency or designee will need to facilitate a neutral approach to a comprehensive test plan that considers input from all involved vendors.
Cal OES built a lab and established a requirement that vendors/respondents must pass testing before deployment. Payment triggers were tied to lab demonstration and a successful pass.	Vendors were committed to the testing and validation process as it was tied to payment triggers.	Structure payment terms around demonstration of successful compliance with requirements prior to production.

Challenge/Finding	Lessons Learned	Recommendation	
Testing call delivery directly	Non-production test cases	In testing/validating test calls,	
into the NGCS core does not	only test sunny-day	ensure injection of the call	
accurately reflect reality.	scenarios. They do not	occurs ahead of any	
	account for small differences	aggregation points, not	
	in SIP ² or HTTPS ³	directly into the NGCS core.	
	messaging or timing. Call	Establish expectations that	
	fields may experience	deployment may identify	
	configuration changes as they	additional considerations not	
	pass through aggregation	seen in test/sterile	
	points that can cause issues	environments.	
	with call delivery and receipt.		
It is difficult to fully replicate	Some issues were not	Ensure either calls from OSPs	
a real environment for testing	discovered until in the	in the area or OSP-simulated	
in the lab.	production environment due	calls, including ones that	
	to the level of nuance. For	cause failures, are tested for	
	example, a wireline call may	proper remediation.	
	pass lab testing but then	Whenever possible, test with	
	present issues with an	real network calls and text.	
	apartment number in		
	production.		
Design			
Interoperability between	NENA i3 allows room for	Contract language should	
neighboring NGCS and	interpretation and NG9-1-1	define that interoperability	
ESInet providers has	vendors approach solution	with immediate neighbors is	
challenges due to the varying	design differently. This	part of the deployment and	
solutions and approaches to	presents interoperability	attach a final milestone to	
network design and how i3 is	challenges with network-to-	this.	
interpreted.	network interfaces across		
	regions and states.		

 ² Session Initiation Protocol
³ Hypertext Transfer Protocol Secure

Challenge/Finding	Lessons Learned	Recommendation
There were interoperability	A vendor's claim that NGCS	Agencies should complete
issues between NGCS and	and CHE are i3-complaint	due diligence and request a
CHE providers when new	does not guarantee	list of CHE providers that
NGCS were introduced.	interoperability will be	have deployed and/or tested
	successful.	with the desired NGCS
		providers. This should be
		specific to i3 deployments
		and detail the version of CHE
		software. Agencies may
		consider requesting
		supporting documentation
		from interoperability testing.
All vendors were required to	While different providers	Include in the contract that all
follow NENA-STA-010.2-	may read the specifications	vendor partners begin with
2016, NENA Detailed	and interpret them	the same specification
Functional and Interface	differently, it is critical that	versions.
Standards for the NENA is	they begin with the same	
Solution.	requirements as a blueprint.	

Key Takeaways

Testing

- Interoperability between NGCS, ESInet, and CHE providers is not a plug-and-play operation. Interoperability is complex due to varying approaches to network design and interpretation of i3 standards. Lab testing, acceptance testing, and a plan for continued testing as new releases and features come about must be completed to validate vendor claims of i3 compliance and interoperability between their NG9-1-1 solutions.
- The lab testing environment and approach taken by Cal OES to certify its vendors helped to create a known stable environment for all potential vendor partners and ensured due diligence to vet

Testing and validation demonstrate that while core service providers and CHE providers may both be capable of i3 functions, some accomplish it using different information or different programming approaches in messages for information delivery. This is why deployment-specific interoperability testing is important.

the capabilities of each vendor partner before they were allowed to provide products/services to the PSAPs.

• As helpful as the lab environment is to ensuring vendor compatibility and quality control, some issues will not be discovered until in a production environment and why there is also an emphasis on acceptance testing. Whenever possible, test with real network calls and text.

Design

- California's deployment model of full redundancy with regional and primary NGCS providers and unique ESInets is original and highly effective for ensuring physical and logical diversity is provided from call inception to termination for all California PSAPs equally.
- Interoperability between neighboring NGCS and ESInet providers has challenges due to the varying solutions and approaches to network design and how i3 is interpreted. Agencies should complete due diligence and request a list of CHE providers that have deployed and/or tested with the desired NGCS providers.
- California identified and awarded vendor partners that fit with its design. It mandated vendors to provide "show your work" interoperability in the Cal OES Lab and stated the results would need to meet Cal OES' satisfaction before network deployment could begin.

Contract and Project Management

The RFP and contract should identify PSAPs and network demarcations. They should clearly state which entity will develop the ICD and which is responsible for developing, testing, and executing, the test plans.

Consider strategies that make it desirable for vendors to agree to the terms and conditions of the contract prior to engaging in procurement. This ensures a procuring agency does not invest months in procurement to reach an impasse and have to reinitiate the procurement process. If this is mandatory, however, it may exclude viable solutions from consideration. • PSAP education needs to be a key part of the change management strategy and an early focus. Ensure that PSAP leadership is well informed of NG9-1-1 impacts to the way call/caller information is received, presented, and shared, as well as new capabilities the NG9-1-1 environment provides, such as policy routing.

• Procuring agencies should consider contractual strategies that make it desirable for vendors to agree to the terms and conditions of the contract prior to engaging in procurement. This will prevent an impasse months into the procurement process and having to begin the process anew.

- Procuring agencies should consider including contract language that does not allow the NG9-1-1 service provider to charge OSPs connection costs and seek cost recovery connections to designated POIs.
- Vendor commitment can wane over time and slow project progress. Tying financial incentives to key milestones will ensure vendors remain committed to tasks through to completion.

Conclusion

Cal OES approached its statewide deployment of NG9-1-1 purposefully, leveraging the NENA i3 standard with a focus on building a redundant and resilient solution for California. Through the procurement and implementation of its design, Cal OES identified lessons learned that may aid other agencies in their NG9-1-1 transition. Those lessons learned have been captured throughout this report in the areas of establishing and testing requirements, technical design, and project management. Each agency and jurisdiction will have its own journey in the transition to NG9-1-1.

Many state and regional programs are in the transition to NG9-1-1. Through communicating lessons learned with the broader 9-1-1 community as to what is working well and what needs to improve, continuity of NG9-1-1 deployments will continuously improve. It is the objective of the National 911 Program and Cal OES to promote information sharing with colleagues across the Nation. The call to action for all agencies, jurisdictions, and states is to continue the dialog and communicate through available platforms what is working well and where improvements can be realized.